Package: RITCH (via r-universe)

February 21, 2025
Type Package
Title R Parser for the ITCH-Protocol
Version 0.1.27

Description Allows to efficiently parse, filter, and write binary ITCH
Files (Version 5.0) containing detailed financial transactions
as distributed by NASDAQ to an R data.table.

License MIT + file LICENSE
URL https://davzim.github.io/RITCH/, https://github.com/DavZim/RITCH

BugReports https://github.com/DavZim/RITCH/issues
Depends R (>=3.5.0)

Imports data.table, Repp (>= 0.12.12), nanotime (>= 0.3.2), bit64 (>=
4.0.5)

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.2.3

Suggests tinytest

Roxygen list(markdown = TRUE)

Repository https://davzim.r-universe.dev

RemoteUrl https://github.com/davzim/ritch

RemoteRef HEAD

RemoteSha 9bd51af48d26703bd95ab4f0db6532a497¢c104cl

Contents

add_meta_to_filename e
count_functions
download_sample_file
download_stock_directory
ex20101224. TEST_ITCH_50 e e e e e e

https://davzim.github.io/RITCH/
https://github.com/DavZim/RITCH
https://github.com/DavZim/RITCH/issues

Index

add_meta_to_filename

filter_itch e 8
format_bytes e e e 11
get_exchange_from_filename Lo oo 12
get_msg classes L e 12
gz _fUnctions 13
list_sample_files oL 14
open_itch_sample_Server e e e e 15
open_itch_specification 15
read_functions e 16
write_1tch e e 22

24

add_meta_to_filename Adds meta information (date and exchange) to an itch filename

Description

Note

that if date and exchange information are already present, they are overwritten

Usage
add_meta_to_filename(file, date, exchange)
Arguments
file the filename
date the date as a date-class or as a string that is understood by base: :as.Date().
exchange the name of the exchange
Value
the filename with exchanged or added date and exchange information
Examples

add_meta_to_filename("03302017.NASDAQ_ITCH50", "2010-12-24", "TEST")
add_meta_to_filename("20170130.BX_ITCH_50.gz", "2010-12-24", "TEST")
add_meta_to_filename("S030220-v50-bx.txt.gz", "2010-12-24", "TEST")
add_meta_to_filename("unknown_file.ITCH_50", "2010-12-24", "TEST")

count_functions

count_functions Counts the messages of an ITCH-file

Description

Counts the messages of an ITCH-file

Usage

count_messages(
file,
add_meta_data = FALSE,
buffer_size = -1,
quiet = FALSE,
force_gunzip = FALSE,
gz_dir = tempdir(),
force_cleanup = TRUE

)

count_orders(x)
count_trades(x)
count_modifications(x)
count_system_events(x)
count_stock_directory(x)
count_trading_status(x)
count_reg_sho(x)
count_market_participant_states(x)
count_mwcb(x)
count_ipo(x)
count_luld(x)
count_noii(x)
count_rpii(x)

Arguments

file the path to the input file, either a gz-file or a plain-text file

add_meta_data

buffer_size

quiet

force_gunzip

gz_dir

force_cleanup

Details

count_functions

if the meta-data of the messages should be added, defaults to FALSE

the size of the buffer in bytes, defaults to 1e8 (100 MB), if you have a large
amount of RAM, 1e9 (1GB) might be faster

if TRUE, the status messages are supressed, defaults to FALSE

only applies if file is a gz-file and a file with the same (gunzipped) name already
exists. if set to TRUE, the existing file is overwritten. Default value is FALSE

a directory where the gz archive is extracted to. Only applies if file is a gz
archive. Default is tempdir ().

only applies if file is a gz-file. If force_cleanup=TRUE, the gunzipped raw file
will be deleted afterwards.

a file or a data.table containing the message types and the counts, as outputted
by count_messages

* count_orders: Counts order messages. Message type A and F

* count_trades: Counts trade messages. Message type P, Q and B

* count_modifications: Counts order modification messages. Message type E, C, X, D, and U

* count_system_events: Counts system event messages. Message type S

* count_stock_directory: Counts stock trading messages. Message type R

count_trading_status: Counts trading status messages. Message type H and h
count_reg_sho: Counts messages regarding reg SHO. Message type Y

count_market_participant_states: Counts messages regarding the status of market par-
ticipants. Message type L

count_mwcb: Counts messages regarding Market-Wide-Circuit-Breakers (MWCB). Message
type V and W

count_ipo: Counts messages regarding IPOs. Message type K

count_luld: Counts messages regarding LULDs (limit up-limit down) auction collars. Mes-
sage type J

count_noii: Counts Net Order Imbalance Indicatio (NOII) messages. Message type I

count_rpii: Counts Retail Price Improvement Indicator (RPII) messages. Message type N

Value

a data.table containing the message-type and their counts for count_messages or an integer value
for the other functions.

download_sample_file

Examples

file <- system.file("extdata"”, "ex20101224.TEST_ITCH_50", package = "RITCH")
count_messages(file)
count_messages(file, add_meta_data = TRUE, quiet = TRUE)

file can also be a .gz file
gz_file <- system.file("extdata”, "ex20101224.TEST_ITCH_50.gz", package = "RITCH")
count_messages(gz_file, quiet = TRUE)

count only a specific class
msg_count <- count_messages(file, quiet = TRUE)

either count based on a given data.table outputted by count_messages
count_orders(msg_count)

or count orders from a file and not from a msg_count
count_orders(file)

Specific class count functions are:
count_orders(msg_count)
count_trades(msg_count)
count_modifications(msg_count)
count_system_events(msg_count)
count_stock_directory(msg_count)
count_trading_status(msg_count)
count_reg_sho(msg_count)
count_market_participant_states(msg_count)
count_mwcbh(msg_count)
count_ipo(msg_count)
count_luld(msg_count)
count_noii(msg_count)
count_rpii(msg_count)

download_sample_file Downloads a sample ITCH File from NASDAQs Server

Description

The Server can be found at https://emi.nasdaq.com/ITCH/Nasdaq%20ITCH/

Usage

download_sample_file(
choice = c("smallest”, "largest”, "earliest"”, "latest”, "random”, "all"),
file = NA,
exchanges = NA,
dir = ".",
force_download = FALSE,
check_md5sum = TRUE,

https://emi.nasdaq.com/ITCH/Nasdaq%20ITCH/

quiet = FALSE

)

Arguments

choice

file

exchanges

dir

force_download

check_md5sum

quiet

Details

download_sample_file

which file should be chosen? One of: smallest (default), largest, earliest (date-
wise), latest, random, or all.

the name of a specific file, overrules the choice and exchanges arguments

A vector of exchanges, can be NASDAQ, BX, or PSX. The default value is to
consider all exchanges.

The directory where the files will be saved to, default is current working direc-
tory.

If the file should be downloaded even if it already exists locally. Default value
is FALSE.

If the md5-sum (hash-value) of the downloaded file should be checked, default
value is TRUE.

if TRUE, the status messages are suppressed, defaults to FALSE

Warning: the smallest file is around 300 MB, with the largest exceeding 5 GB. There are about 17
files in total. Downloading all might take a considerable amount of time.

Value

an invisible vector of the files

Examples

Not run:

download_sample_file()
file <- download_sample_file()

file

download a specific sample file
file <- download_sample_file(file = "2019130.BX_ITCH_50.gz")

file

End(Not run)

download_stock_directory 7

download_stock_directory

Downloads the stock directory (stock locate codes) for a given date
and exchange

Description
The data is downloaded from NASDAQs server, which can be found here https://emi.nasdaq.
com/ITCH/Stock_Locate_Codes/

Usage

download_stock_directory(exchange, date, cache = FALSE, quiet = FALSE)

Arguments
exchange The exchange, either NASDAQ (equivalent to NDQ), BX, or PSX
date The date, should be of class Date. If not the value is converted using as.Date.
cache If the stock directory should be cached, can be set to TRUE to save the stock
directories in the working directory or a character for a target directory.
quiet If the download function should be quiet, default is FALSE.
Value

a data.table of the tickers, the respective stock locate codes, and the exchange/date information

Examples

Not run:
download_stock_directory("BX", "2019-07-02")
download_stock_directory(c("BX", "NDQ"), c("2019-07-02", "2019-07-03"))
download_stock_directory(”"BX", "2019-07-02", cache = TRUE)

download_stock_directory(”"BX", "2019-07-02", cache = "stock_directory”)
dir.exists("stock_directory"”)

list.files("stock_directory”)

End(Not run)

https://emi.nasdaq.com/ITCH/Stock_Locate_Codes/
https://emi.nasdaq.com/ITCH/Stock_Locate_Codes/

8 filter_itch

ex20101224 . TEST_ITCH_50
ITCH 50 Example Testing Dataset

Description

ITCH 50 Example Testing Dataset

ex20101224. TEST_ITCH_50

The test dataset contains artificial trading data for three made up stocks: ALC, BOB, and CHAR.
The dataset is used in the examples and unit tests of the package.

The data contains the following count of messages:

* 6 system event (message type S)
* 3 stock directory (message type R)

* 3 trading status (message type H)

5000 orders (4997 message type A and 3 F)
* 2000 modifications (198 F, 45 X, 1745 D, and 12 U message types)

5000 trades (message type P)

The file is also available as ex20101224 . TEST_ITCH_50.gz.

To get real sample ITCH datasets, see the download_sample_file() function.

Examples

file <- system.file("extdata"”, "ex20101224.TEST_ITCH_50", package = "RITCH")

sys <- read_system_events(file)

filter_itch Filters an ITCH file to another ITCH file

Description

This function allows to perform very fast filter operations on large ITCH files. The messages are
written to another ITCH file.

filter_itch 9

Usage

filter_itch(
infile,
outfile,
filter_msg_class = NA_character_,
filter_msg_type = NA_character_,
filter_stock_locate = NA_integer_,
min_timestamp = bit64::as.integer64(NA),
max_timestamp = bit64::as.integer64(NA),
filter_stock = NA_character_,
stock_directory = NA,
skip = 0,
n_max = -1,
append = FALSE,
overwrite = FALSE,
gz = FALSE,
buffer_size = -1,
quiet = FALSE,
force_gunzip = FALSE,
force_cleanup = TRUE

)
Arguments
infile the input file where the messages are taken from, can be a gz-archive or a plain
ITCH file.
outfile the output file where the filtered messages are written to. Note that the date and

exchange information from the infile are used, see also add_meta_to_filename()
for further information.

filter_msg_class
a vector of classes to load, can be "orders", "trades", "modifications”, ... see also
get_msg_classes(). Default value is to take all message classes.

filter_msg_type
a character vector, specifying a filter for message types. Note that this can be
used to only return A’ orders for instance.

filter_stock_locate
an integer vector, specifying a filter for locate codes. The locate codes can be
looked up by calling read_stock_directory() or by downloading from NAS-
DAQ by using download_stock_directory(). Note that some message types
(e.g., system events, MWCB, and IPO) do not use a locate code.

min_timestamp an 64 bit integer vector (see also bit64: :as.integer64()) of minimum times-
tamp (inclusive). Note: min and max timestamp must be supplied with the same
length or left empty.

max_timestamp an 64 bit integer vector (see also bit64::as.integer64()) of maxium times-
tamp (inclusive). Note: min and max timestamp must be supplied with the same
length or left empty.

10 filter_itch

filter_stock a character vector, specifying a filter for stocks. Note that this a shorthand for
the filter_stock_locate argument, as it tries to find the stock_locate based
on the stock_directory argument, if this is not found, it will try to extract the
stock directory from the file, else an error is thrown.

stock_directory
A data.frame containing the stock-locate code relationship. As outputted by
read_stock_directory(). Only used if filter_stock is set. To download
the stock directory from NASDAQs server, use download_stock_directory().

skip Number of messages to skip before starting parsing messages, note the skip
parameter applies to the specific message class, i.e., it would skip the messages
for each type (e.g., skip the first 10 messages for each class).

n_max Maximum number of messages to parse, default is to read all values. Can also
be a data.frame of msg_types and counts, as returned by count_messages().
Note the n_max parameter applies to the specific message class not the whole

file.

append if the messages should be appended to the outfile, default is false. Note, this is
helpful if skip and or n_max are used for batch filtering.

overwrite if an existing outfile with the same name should be overwritten. Default value is
false

gz if the output file should be gzip-compressed. Note that the name of the output

file will be appended with .gz if not already present. The final output name is
returned. Default value is false.

buffer_size the size of the buffer in bytes, defaults to 1e8 (100 MB), if you have a large
amount of RAM, 1e9 (1GB) might be faster

quiet if TRUE, the status messages are suppressed, defaults to FALSE

force_gunzip only applies if the input file is a gz-archive and a file with the same (gunzipped)
name already exists. if set to TRUE, the existing file is overwritten. Default
value is FALSE

force_cleanup only applies if the input file is a gz-archive. If force_cleanup=TRUE, the gun-
zipped raw file will be deleted afterwards. Only applies when the gunzipped raw
file did not exist before.

Details

Note that this can be especially useful on larger files or where memory is not large enough to filter
the datalimits the analysis.

As with the read_itch () functions, it allows to filter for msg_class, msg_type, stock_locate/stock,
and timestamp.

Value

the name of the output file (maybe different from the inputted outfile due to adding the date and
exchange), silently

format_bytes 11

Examples

infile <- system.file("extdata”, "ex20101224.TEST_ITCH_50", package = "RITCH")
outfile <- tempfile(fileext = "_20101224.TEST_ITCH_50")
filter_itch(
infile, outfile,
filter_msg_class = c("”orders”, "trades"),
filter_msg_type = "R", # stock_directory
skip = @, n_max = 100
)

expecting 100 orders, 100 trades, and 3 stock_directory entries
count_messages(outfile)

check that the output file contains the same
res <- read_itch(outfile, c("orders"”, "trades"”, "stock_directory”))

sapply(res, nrow)

res2 <- read_itch(infile, c("orders"”, "trades", "stock_directory”),
n_max = 100)

all.equal(res, res2)

format_bytes Formats a number of bytes

Description

Formats a number of bytes

Usage

format_bytes(x, digits = 2, unit_suffix = "B", base = 1000)

Arguments
X the values
digits the number of digits to display, default value is 2
unit_suffix the unit suffix, default value is "B’ (for bytes), useful is also B/s’ if you have
read/write speeds
base the base for kilo, mega, ... definition, default is 1000
Value

the values as a character

12 get_msg_classes

Examples

format_bytes(1234)
format_bytes(1234567890)
format_bytes(123456789012, unit_suffix = "iB"”, base = 1024)

get_exchange_from_filename
Returns the exchange from an ITCH-filename

Description

Returns the exchange from an ITCH-filename

Usage

get_exchange_from_filename(file)

Arguments

file a filename

Value

The exchange

Examples

get_exchange_from_filename("03302017.NASDAQ_ITCH50")
get_exchange_from_filename("20170130.BX_ITCH_50.gz")
get_exchange_from_filename("S030220-v50-bx.txt.gz")
get_exchange_from_filename("Unknown_file_format")

get_msg_classes Returns the message class data for the message types

Description

All information is handled according to the official ITCH 5.0 documentation as found here: http:
//www.nasdaqgtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.
pdf

Usage

get_msg_classes()

http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf

gz_functions 13

Details

* msg_type the type of the message
* msg_class the group the message belongs to
* msg_name the official name of the message

* doc_nr the number of the message in the documentation

Value

a data.table with the information of the message-types

See Also

open_itch_specification()

Examples

get_msg_classes()

gz_functions Compresses and uncompresses files to and from gz-archives

Description

Allows the compression and uncompression of files

Usage
gunzip_file(
infile,
outfile = gsub(”\\.gz$", "", infile),
buffer_size = min(4 * file.size(infile), 2e+09)
)
gzip_file(
infile,
outfile = NA,
buffer_size = min(4 x file.size(infile), 2e+09)
)
Arguments
infile the file to be zipped or unzipped
outfile the resulting zipped or unzipped file

buffer_size the size of the buffer to read in at once, default is 4 times the file.size (max 2Gb).

14 list_sample_files

Details

Functions are
e gunzip_file: uncompresses a gz-archive to raw binary data

-gzip_file: compresses a raw binary data file to a gz-archive

Value

The filename of the unzipped file, invisibly

Examples

gzfile <- system.file("extdata”, "ex20101224.TEST_ITCH_50.gz", package = "RITCH")
file <- system.file(”extdata”, "ex20101224.TEST_ITCH_50", package = "RITCH")

uncompress file

(outfile <- gunzip_file(gzfile, "tmp"))
file.info(outfile)

unlink(outfile)

compress file

(outfile <- gzip_file(file))
file.info(outfile)
unlink(outfile)

list_sample_files Returns a data.table of the sample files on the server

Description

The Server can be found at https://emi.nasdaq.com/ITCH/Nasdaq%2@ITCH/

Usage

list_sample_files()

Value

a data.table of the files

Examples

Not run:
list_sample_files()

End(Not run)

https://emi.nasdaq.com/ITCH/Nasdaq%20ITCH/

open_itch_sample_server 15

open_itch_sample_server
Opens the ITCH sample page

Description

The server can be found at https://emi.nasdaq.com/ITCH/Nasdag%20ITCH/.

Usage

open_itch_sample_server()

Value

the URL (invisible)

Examples

Not run:
open_itch_sample_server()

End(Not run)

open_itch_specification
Opens the ITCH Specification PDF

Description
The specifications can be found as a PDF https: //www.nasdaqgtrader.com/content/technicalsupport/
specifications/dataproducts/NQTVITCHspecification.pdf.

Usage

open_itch_specification()

Value

the URL (invisible)

Examples

Not run:
open_itch_specification()

End(Not run)

https://emi.nasdaq.com/ITCH/Nasdaq%20ITCH/
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf

16 read_functions

read_functions Reads certain messages of an ITCH-file into a data.table

Description

For faster file-reads (at the tradeoff of increased memory usages), you can increase the buffer_size
to 1GB (1e9) or more.

If you access the same file multiple times, you can provide the message counts as outputted from
count_messages() to the n_max argument, this allows skipping one pass over the file per read
instruction.

If you need to read in multiple message classes, you can specify multiple message classes to
read_itch, which results in only a single file pass.

If the file is too large to be loaded into the workspace at once, you can specify different skip and
n_max to load only a specific range of messages. Alternatively, you can filter certain messages to
another file using filter_itch(), which is substantially faster than parsing a file and filtering it.

Note that all read functions allow both plain ITCH files as well as gzipped files. If a gzipped file is
found, it will look for a plain ITCH file with the same name and use that instead. If this file is not
found, it will be created by unzipping the archive. Note that the unzipped file is NOT deleted by
default (the file will be created in the current working directory). It might result in increased disk
usage but reduces future read times for that specific file. To force RITCH to delete "temporary"
files after uncompressing, use force_cleanup = TRUE (only deletes the files if they were extracted
before, does not remove the archive itself).

Usage

read_itch(
file,
filter_msg_class = NA,
skip = 0,
n_max = -1,
filter_msg_type = NA_character_,
filter_stock_locate = NA_integer_,
min_timestamp = bit64::as.integer64(NA),
max_timestamp = bit64::as.integer64(NA),
filter_stock = NA_character_,
stock_directory = NA,
buffer_size = -1,
quiet = FALSE,
add_meta = TRUE,
force_gunzip = FALSE,
gz_dir = tempdir(),
force_cleanup = TRUE

)

read_system_events(file, ..., add_descriptions = FALSE)

read_functions 17
read_stock_directory(file, ..., add_descriptions = FALSE)
read_trading_status(file, ..., add_descriptions = FALSE)
read_reg_sho(file, ..., add_descriptions = FALSE)
read_market_participant_states(file, ..., add_descriptions = FALSE)
read_mwcb(file, ...)
read_ipo(file, ., add_descriptions = FALSE)
read_luld(file, ...)
read_orders(file, ...)
read_modifications(file, ...)
read_trades(file, ...)
read_noii(file, ., add_descriptions = FALSE)
read_rpii(file, ., add_descriptions = FALSE)
get_orders(file, ...)
get_trades(file, ...)
get_modifications(file, ...)

Arguments
file the path to the input file, either a gz-archive or a plain ITCH file
filter_msg_class

a vector of classes to load, can be "orders", "trades", "modifications", ... see also

skip

n_max

filter_msg_type

get_msg_classes(). Default value is to take all message classes.

Number of messages to skip before starting parsing messages, note the skip
parameter applies to the specific message class, i.e., it would skip the messages
for each type (e.g., skip the first 10 messages for each class).

Maximum number of messages to parse, default is to read all values. Can also
be a data.frame of msg_types and counts, as returned by count_messages().
Note the n_max parameter applies to the specific message class not the whole
file.

a character vector, specifying a filter for message types. Note that this can be
used to only return *A’ orders for instance.

18 read_functions

filter_stock_locate
an integer vector, specifying a filter for locate codes. The locate codes can be
looked up by calling read_stock_directory() or by downloading from NAS-
DAQ by using download_stock_directory(). Note that some message types
(e.g., system events, MWCB, and IPO) do not use a locate code.

min_timestamp an 64 bit integer vector (see also bit64: :as.integer64()) of minimum times-
tamp (inclusive). Note: min and max timestamp must be supplied with the same
length or left empty.

max_timestamp an 64 bit integer vector (see also bit64::as.integer64()) of maxium times-
tamp (inclusive). Note: min and max timestamp must be supplied with the same
length or left empty.

filter_stock a character vector, specifying a filter for stocks. Note that this a shorthand for
the filter_stock_locate argument, as it tries to find the stock_locate based
on the stock_directory argument, if this is not found, it will try to extract the
stock directory from the file, else an error is thrown.

stock_directory
A data.frame containing the stock-locate code relationship. As outputted by
read_stock_directory(). Only used if filter_stock is set. To download
the stock directory from NASDAQs server, use download_stock_directory().

buffer_size the size of the buffer in bytes, defaults to 1e8 (100 MB), if you have a large
amount of RAM, 1e9 (1GB) might be faster

quiet if TRUE, the status messages are suppressed, defaults to FALSE
add_meta if TRUE, the date and exchange information of the file are added, defaults to
TRUE

force_gunzip only applies if the input file is a gz-archive and a file with the same (gunzipped)
name already exists. if set to TRUE, the existing file is overwritten. Default
value is FALSE

gz_dir a directory where the gz archive is extracted to. Only applies if file is a gz
archive. Default is tempdir ().

force_cleanup only applies if the input file is a gz-archive. If force_cleanup=TRUE, the gun-
zipped raw file will be deleted afterwards. Only applies when the gunzipped raw
file did not exist before.

e Additional arguments passed to read_itch

add_descriptions
add longer descriptions to shortened variables. The added information is taken
from the official ITCH documentation see also open_itch_specification()

Details

The details of the different messages types can be found in the official ITCH specification (see also
open_itch_specification())

* read_itch: Reads a message class message, can also read multiple classes in one file-pass.

* read_system_events: Reads system event messages. Message type S

read_functions 19
* read_stock_directory: Reads stock trading messages. Message type R
* read_trading_status: Reads trading status messages. Message type H and h
* read_reg_sho: Reads messages regarding reg SHO. Message type Y

* read_market_participant_states: Reads messages regarding the status of market partici-
pants. Message type L

* read_mwcb: Reads messages regarding Market-Wide-Circuit-Breakers (MWCB). Message
type V and W

* read_ipo: Reads messages regarding IPOs. Message type K

* read_luld: Reads messages regarding LULDs (limit up-limit down) auction collars. Message
type J

* read_orders: Reads order messages. Message type A and F

* read_modifications: Reads order modification messages. Message type E, C, X, D, and U
* read_trades: Reads trade messages. Message type P, Q and B

* read_noii: Reads Net Order Imbalance Indicatio (NOII) messages. Message type I

* read_rpii: Reads Retail Price Improvement Indicator (RPII) messages. Message type N

For backwards compatability reasons, the following functions are provided as well:

» get_orders: Redirects to read_orders
e get_trades: Redirects to read_trades

e get_modifications: Redirects to read_modifications

Value

a data.table containing the messages

References

https://www.nasdaqgtrader.com/content/technicalsupport/specifications/dataproducts/
NQTVITCHspecification.pdf

https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf

20 read_functions

Examples

file <- system.file("extdata”, "ex20101224.TEST_ITCH_50", package = "RITCH")
od <- read_orders(file, quiet = FALSE) # note quiet = FALSE is the default
tr <- read_trades(file, quiet = TRUE)

Alternatively
od <- read_itch(file, "orders"”, quiet = TRUE)

11 <- read_itch(file, c("orders"”, "trades"), quiet = TRUE)

od
tr
str(ll, max.level = 1)

additional options:

take only subset of messages
od <- read_orders(file, skip = 3, n_max = 10)

a message count can be provided for slightly faster reads
msg_count <- count_messages(file, quiet = TRUE)
od <- read_orders(file, n_max = msg_count)

.gz archive functionality

.gz archives will be automatically unzipped

gz_file <- system.file("extdata”, "ex20101224.TEST_ITCH_50.gz", package = "RITCH")
od <- read_orders(gz_file)

force a decompress and delete the decompressed file afterwards

od <- read_orders(gz_file, force_gunzip = TRUE, force_cleanup = TRUE)

read_itch()
otm <- read_itch(file, c("orders"”", "trades"), quiet = TRUE)
str(otm, max.level = 1)

read_system_events()
se <- read_system_events(file, add_descriptions = TRUE, quiet = TRUE)
se

read_stock_directory()
sd <- read_stock_directory(file, add_descriptions = TRUE, quiet = TRUE)
sd

read_trading_status()
ts <- read_trading_status(file, add_descriptions = TRUE, quiet = TRUE)
ts

read_reg_sho()

Not run:

note the example file has no reg SHO messages

rs <- read_reg_sho(file, add_descriptions = TRUE, quiet = TRUE)
rs

read_functions

End(Not run)

read_market_participant_states()

Not run:

note the example file has no market participant states

mps <- read_market_participant_states(file, add_descriptions = TRUE,
quiet = TRUE)

mps

End(Not run)

read_mwcb()

Not run:

note the example file has no circuit breakers messages
mwch <- read_mwcb(file, quiet = TRUE)

mwch

End(Not run)

read_ipo()

Not run:

note the example file has no IPOs

ipo <- read_ipo(file, add_descriptions = TRUE, quiet = TRUE)
ipo

End(Not run)

read_luld()

Not run:

note the example file has no LULD messages
luld <- read_luld(file, quiet = TRUE)

luld

End(Not run)

read_orders()
od <- read_orders(file, quiet = TRUE)
od

read_modifications()
mod <- read_modifications(file, quiet = TRUE)
mod

read_trades()
tr <- read_trades(file, quiet = TRUE)
tr

read_noii()

Not run:

note the example file has no NOII messages

noii <- read_noii(file, add_descriptions = TRUE, quiet = TRUE)
noii

22 write_itch

End(Not run)

read_rpii()

Not run:

note the example file has no RPII messages

rpii <- read_rpii(file, add_descriptions = TRUE, quiet = TRUE)
rpii

End(Not run)

write_itch Writes a data.frame or a list of data.frames of ITCH messages to file

Description

Note that additional information, e.g., columns that were added, will be dropped in the process and
only ITCH-compliant information is saved.

Usage

write_itch(
11,
file,
add_meta = TRUE,
append = FALSE,
compress = FALSE,
buffer_size = 1e+08,
quiet = FALSE,
append_warning = TRUE

)
Arguments

11 a data.frame or a list of data.frames of ITCH messages, in the format that the
read_functions() return

file the filename of the target file. If the folder to the file does not exist, it will be
created recursively

add_meta if date and file information should be added to the filename. Default value is
TRUE. Note that adding meta information changes the filename.

append if the information should be appended to the file. Default value is FALSE

compress if the file should be gzipped. Default value is FALSE. Note that if you compress
a file, buffer_size matters a lot, with larger buffers you are more likely to get
smaller filesizes in the end. Alternatively, but slower, is to write the file without
compression fully and then gzip the file using another program.

buffer_size the maximum buffer size. Default value is 1e8 (100MB). Accepted values are >

52 and < 5€9

write_itch 23

quiet if TRUE, the status messages are suppressed, defaults to FALSE

append_warning if append is set, a warning about timestamp ordering is given. Set append_warning
= FALSE to silence the warning. Default value is TRUE

Details

Note that the ITCH filename contains the information for the date and exchange. This can be
specified explicitly in the file argument or it is added if not turned off add_meta = FALSE.

Value

the filename (invisibly)

Examples

infile <- system.file("extdata”, "ex20101224.TEST_ITCH_50", package = "RITCH")
sys <- read_system_events(infile, quiet = TRUE)

outfile <- tempfile()

write_itch(sys, outfile)

create a list of events, stock directory, and orders and write to a file
sdir <- read_stock_directory(infile, quiet = TRUE)
od <- read_orders(infile, quiet = TRUE)

11 <- list(sys, sdir, od)
write_itch(1ll, outfile)

Index

add_meta_to_filename, 2
add_meta_to_filename(), 9

base::as.Date(), 2
bit64::as.integer64(), 9, I8

count_functions, 3
count_ipo (count_functions), 3
count_luld (count_functions), 3
count_market_participant_states
(count_functions), 3
count_messages (count_functions), 3
count_messages(), 10, 16, 17
count_modifications (count_functions), 3
count_mwcb (count_functions), 3
count_noii (count_functions), 3
count_orders (count_functions), 3
count_reg_sho (count_functions), 3
count_rpii (count_functions), 3
count_stock_directory
(count_functions), 3
count_system_events (count_functions), 3
count_trades (count_functions), 3
count_trading_status (count_functions),
3

download_sample_file, 5
download_sample_file(), 8
download_stock_directory, 7
download_stock_directory(), 9, 10, 18

ex20101224.TEST_ITCH_50, 8

filter_itch, 8
filter_itch(), 16
format_bytes, 11

get_exchange_from_filename, 12
get_modifications (read_functions), 16
get_msg_classes, 12
get_msg_classes(), 9,17

24

get_orders (read_functions), 16
get_trades (read_functions), 16
gunzip_file (gz_functions), 13
gz_functions, 13

gzip_file (gz_functions), 13

list_sample_files, 14

open_itch_sample_server, 15
open_itch_specification, 15
open_itch_specification(), I8

read_functions, 16
read_functions(), 22
read_ipo (read_functions), 16
read_itch (read_functions), 16
read_itch(), 10
read_luld (read_functions), 16
read_market_participant_states
(read_functions), 16
read_modifications (read_functions), 16
read_mwcb (read_functions), 16
read_noii (read_functions), 16
read_orders (read_functions), 16
read_reg_sho (read_functions), 16
read_rpii (read_functions), 16
read_stock_directory (read_functions),
16
read_stock_directory(), 9, 10, 18
read_system_events (read_functions), 16
read_trades (read_functions), 16
read_trading_status (read_functions), 16

tempdir(), 4, 18

write_itch, 22

	add_meta_to_filename
	count_functions
	download_sample_file
	download_stock_directory
	ex20101224.TEST_ITCH_50
	filter_itch
	format_bytes
	get_exchange_from_filename
	get_msg_classes
	gz_functions
	list_sample_files
	open_itch_sample_server
	open_itch_specification
	read_functions
	write_itch
	Index

